
Usability in Scientific and Astronomy Software

Honours Literature Review

Laurisha Rampersad
University of Cape Town

Student Number: RMPLAU001

ABSTRACT
Usability is one of the most important aspects of software
development. In the development of scientific software, how-
ever, usability practices are challenging and barely used. As
scientific software is becoming more complex and relevant,
the usability of this software is a necessary and important
research topic. The reasons for the challenges to usabil-
ity stem from the nature of the complex subject domain.
Developers of scientific software lack either domain-specific
knowledge or software development experience. A possible
solution might be persistent collaboration of domain experts
and usability professionals. This would take place through-
out development and include stages of usability evaluation.
There are many methods of evaluating usability. After anal-
ysis of these methods, it is suggested that user testing and
heuristic evaluation would be the most productive for the
domain of scientific software development. One type of sci-
entific software, astronomy software, is a relatively new pur-
suit and usability practices in this field are under-utilised.
Different software tools in the field are analysed in this pa-
per. The common trends and standards indicate that user
friendly software seems to be highly challenged in the field
of software for astronomy. A focus on introducing usability
practices in this field of software development through de-
sign and evaluation could result in more effective software.

Keywords
Usability; Scientific Software; Astronomy; Visualization

1. INTRODUCTION
Usability considerations are necessary during software de-

velopment for people. They allow for a greater degree of
efficient interaction between the software and the intended
users. Usability has an inherent degree of subjectivity, so
it is not surprising that there is confusion about the con-
cept. As a result of different groups of software engineers
and usability experts developing their own models in isola-
tion from one another, there isn’t a consistent knowledge

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

base to address usability [27]. The fields of Human Com-
puter Interaction (HCI) and User Centred Design (UCD)
endeavour to study the many methods to implement and
evaluate usability. Spanning from user satisfaction to learn-
ability, there are a range of attributes to consider in making
software more appealing and useful to users.

In conventional domains (such as mobile applications and
web interfaces), there is widespread proliferation of usability
methods. However, in complex and domain specific software
projects, usability is often challenging and not established
by research [4].

These complex, domain-specific contexts include the field
of scientific software - for improved workflows and research
[18]. Brooke’s notion is that usability is a concept which ex-
ists with reference to a specific context [2]. This implies that
usability standards (which are already fraught with variation
and are difficult to measure [27]) will be further disparate
depending on the situational context of the software.

This review critically analyses the use of usability prac-
tices and evaluations in scientific software development, with
a focus on software in Astronomy. Software development in
Astronomy is a rapidly expanding field with a focus on As-
tronomy visualization, analysis and collaborative software.

Section 2 will discuss usability in terms of Scientific Soft-
ware with reference to the unique goals, requirements and
challenges in this field. Section 3 discusses methods of eval-
uating usability and how effective these evaluations are. In
section 4, Astronomy software is explored. This software
is divided into one of three categories: analytical, collab-
orative or visualisation. The various Astronomy software
packages are then commented on and compared using ob-
servation and the appropriate literature. Finally, section 5
gives an overview of the most relevant findings of the review,
and also suggests where further research and work is needed
to address to issues of usability in software for complex do-
mains such as Astronomy.

2. SCIENTIFIC SOFTWARE
Interviews by Kelly and Sanders [24] found that scien-

tific software is developed for three main purposes, namely:
research, training and external decision support (software
moved into new industries to support further research). These
purposes overlap and are connected by the cognitive com-
plexity of the subject matter. Despite the growing impor-
tance of this field of software development, there has been
little research contributing to software standards in this field
[12]. In designing software, certain traits are common in sci-
entific fields.



Usually, the developers of scientific software are either
software developers with little knowledge of the highly spe-
cific subject matter, or instead are domain experts with re-
cent, limited knowledge about software development [18, 29].

In the first scenario, the customer and end user is the re-
search scientist. A typical problem of this scenario is that
it is rare for the exact requirements of the project to be
known in advance [28]. This is a huge disadvantage in a
field where developers aren’t acquainted with the domain
expert activities. Costabile et al. separates these activities
into two classes [6]. Class 1 consists of activities involv-
ing tailoring the software to choose between existing be-
haviours/interactions such as parametrization (instructing
the software on how to handle different data) or annota-
tions. Class 2 involves some level of programming such as
creating models based on the data. Without understanding
the tasks the end user will perform, usability criteria like
learnability and ease of use won’t be addressed adequately.

In the second scenario where the domain expert/ scientist
is the developer, learning the required software development
skills may take a lot of effort. This effort will increase for the
quality of the software to be more than just adequate. Good
software for science should be able to be extended/adapted
for unforeseen requirements and verifiably accurate. The
latter is difficult due to the fact that scientists lack test ora-
cles (the data with which to test the accuracy of the output
of the software) [29]. So while the scientist may have a bet-
ter understanding of the use cases, the software might not
undergo sufficient testing, especially usability testing when
the end-user and developer have the same persona (a hy-
pothetical user classification). This was found in a survey
by Kelly and Sanders [13]. The survey interviewed scientific
domain experts who were developing software. The survey
found that interviewees would often omit usability testing
and user documentation entirely, if the end users would be
fellow scientists working in the same field.

A study by Segal [28] suggested that a collaboration of
software developers and research scientists should create the
software - with the scientist in the role of a hybrid peer-
programmer and end user. Segal also notes in another pa-
per [29] that a problem may arise when the developer is a
software engineer rather than an end user developer. The
problem is that incredibly extensive requirements would be
necessary, however, as stated - these are not always available.
It can be seen that a ”persistent partnership” [4] between do-
main experts, software engineers and usability developers is
required, although this may be unrealistic in software devel-
opment which isn’t commercial, due to funding and scope of
the project.

2.1 Case Study
In the Omero/Usable Image Project [18], a team of us-

ability experts (Usable Image project) and software engi-
neers collaborated on a life sciences software project named
Omero1. The combined team used weekly evaluation cycles
involving iterative user testing and software development.
This model exposed many usability flaws: from an easy-to-
miss labelling problem in the search interface, to a substan-
tial hierarchy question.Software engineers initially allowed
images to belong to categories. Through usability prac-

1Omero is a Java based client-server system for visualizing,
managing, analysing, and annotating microscope images and
metadata [18]

tices, they found that scientists preferred a system closer
to tagging the images (similar to tagging in social media)
and this more optimal method was used in the final de-
sign. The usability practices of the Usable Image Project
team involved creating user testing sessions, design work-
shops, design research sessions, usability inspections and
user guides/training materials. The conclusions of this case
study involved the notion that integrating usability practices
into scientific software development would substantially im-
prove the software, and that these usability practices would
need to be flexible and tailored to the specific project.

3. USABILITY EVALUATION
Usability testing is more than just a once-off activity at

the end of a software project. It is only through continu-
ous interaction with end-users that a software project will
transcend being merely a tool that does the bare minimum
functionality. One model of continuous usability testing, as
described in the Omero project [18], is a weekly user evalu-
ation cycle. At the beginning of each week, user testing is
taped and analysed. The findings are sent to the software
development team who then work on tailoring the software
to the updated requirements/suggestions. This is quite an
intensive method and not all software projects have the bud-
get or scope for this level of testing.

In fact, the cost, effort and experience required for a par-
ticular usability evaluation method may affect which one is
used.

There are three types of usability evaluation methods:
user-based, expert-based and model-based [25]. User-based
methods have users as the source of evaluation methods and
these methods include user testing, interviews and walk-
throughs. Expert-based methods rely on usability experts
having knowledge of best practices. Examples are heuristic
evaluations, guideline reviews and cognitive walkthroughs.
Finally, model-based methods simulate human interactions
and perceptions using a task based approach.

3.1 Evaluation Methods

3.1.1 Cognitive Walkthroughs
Cognitive walkthroughs involve setting up a scenario of a

certain task a user might need to perform, and going (talk-
ing) through all the actions necessary to complete the task.
This exercise can be performed with either users or usabil-
ity experts. The goal is to determine difference between
user expectations and the reality of the interface through
exploration[19]. This also takes note of the prerequisite and
learned knowledge of the potential user. This method’s ef-
fort and cost depend on the number of people evaluating the
software and the type of expertise these people have.

3.1.2 User Testing
This is an empirical experiment of the software. Users

have to complete a set of tasks using the software with little
assistance from the test conductors after they have received
the appropriate level of training for using the system. It
was found in a study by Jeffries et al. [19] that user test-
ing often found the most critical problems in the software.
The tests take place either under real-world or controlled
settings, with the test possibly being recorded on video or
using computer logs.



3.1.3 Guidelines or Checklist
A set of requirements and usability standards are checked

against by a usability expert (or even a software engineer)
to find potential problems in the software. The advantage of
this approach is that very common mistakes may be avoided
and it is relatively simple for an expert or software devel-
oper to check against criteria such as responsiveness, error
detection and feedback. The effort required is thus minimal,
however unique and unexpected errors might not be picked
up, diminishing this method’s effectiveness.

3.1.4 Heuristic Evaluation
This involves inspection of the software by individuals

with experience in usability or interface design. Studies in
the paper by Jeffries et al. [19] found that heuristic evalua-
tion not only found the most problems, it is also relatively
low cost. The main disadvantage would be the need (or
rather preference) for many evaluators with usability exper-
tise as well as subject domain knowledge. However, the
likelihood of a domain expert (such as a doctoral-level ex-
pert) deciding to specialise as a usability expert is quite low
[4] and thus this combination of expertise is rare. The key
factor in terms of effort for this method would come down
to the number of evaluators used, as according to Jeffries
et al. the effectiveness of heuristic evaluation increases with
the number of evaluators.

3.1.5 Surveys and Questionnaires
A set of questions (qualitative and quantitative) are an-

swered by users about the software. This can occur either
in the beginning of development as a requirements gathering
exercise, or at the end as a response to using the software.
Surveys have often been used to complement other evalua-
tion methods [16]. Surveys are easy to use and interpret,
however, one needs to ensure that all the relevant questions
are asked or users may not be able to suggest improvements
or detect errors.

3.1.6 Models
Model based evaluations are particularly time consuming

as a model needs to be constructed to mimic human be-
haviour, and then tested to ensure validity [25]. Models
are low cost as once a model has been proved valid, it may
be used to test multiple iterations of designs. Designs are
constructed at a task level and so the added time of creat-
ing a good task for modelling is cumbersome. Examples of
model based evaluations include the GOMS (Goals, Opera-
tors, Methods and Selection) model which is based on human
cognition abilities and the EPIC (Executive-Process/Interactive
Control) system which models human perception and be-
haviour.

3.2 Discussion
In a recent paper[22], a systematic mapping review anal-

ysed the most popular forms of usability evaluations in pa-
pers since 2012. User Testing was the second most frequently
used (14.14%), following Surveys/Questionnaires (26.26%).
Despite it’s apparent advantages, Heuristic Evaluations was
the third most popular with a frequency of 12.63%. Fi-
nally cognitive walkthroughs and checklist verification had
frequencies of less than 3%. Further findings from the review
found that of software applications that underwent usabil-
ity evaluations, only 2.03% came from the domain of expert

systems.
This seems to support one of the conclusions of Chilana

et al. [4], of finding usability practices and testing chal-
lenging in complex domain software development. Følstad
compared the results of using domain experts for a cognitive
walkthrough against the results of using usability experts.
The domain experts found fewer problems than the usabil-
ity experts, however, the problems found were more critical.
Although heuristic evaluation (a method with less user test-
ing) seems to be the most popular evaluation method, it can
be seen that user involvement in usability is very important
when the domain of the software is complex.

A combination of user knowledge, software engineering
skill and usability expertise seems to be necessary for achiev-
ing the best possible results. Out of the usability methods
described, heuristic evaluation and user testing have the
highest rates of finding problems in the software. Thus,
evaluation should use both methods, with a focus on user
testing closer to the beginning of the project. This can be
done with low fidelity prototypes as well, to ensure that
the big conceptual notions and requirements are understood
fully before the software cannot be changed without incur-
ring great cost. Continual user evaluations with all three
parties will be conducive to an end product which satisfies
user expectations.

Despite the general recommendation for usability evalua-
tion, there is some debate over the misuse of this evaluation.
In a field such a scientific software development, there is a
large scope for creating innovative and novel software to aid
further knowledge discovery. A field like Astronomy Soft-
ware development (and even Astronomy Visualisation soft-
ware) is relatively young and tasks and outcomes are often
unknown at the outset of developing software. Greenberg
and Buxton [10] argue that usability evaluation may stifle
projects in this area of innovative development as we are not
aware how cultural adoption of this software might unfold.

4. ASTRONOMY SOFTWARE
Astronomy involves studying objects and processes which

exist outside of Earth’s atmosphere. In order to gather this
data, large scale telescopes and arrays of telescopes (such
as MeerKAT2) are used. The volumes of data collected are
massive, and file can reach up to a petabyte (1015 bytes)
in size. This prompted Hassan and Fluke [11] to coin the
phrase Petascale Astronomy Era. This data is used for a
range of purposes and processing such large files leads to a
unique challenge when creating software for astronomy. The
goals of this type of software vary from statistical analysis
as computed by AstroStat [14], collaboration as would be
facilitated by sharing of the data in CyberSKA [15] to vi-
sualizing the multidimensional data with tools and libraries
such as Karma [8], VisIVO [1] and GIPSY [23].

For this range of software, it is impractical to hold every
tool to the same set of usability standards. An astronomy
tool for communication would be far easier to make usable
compared to an analysis tool processing a petabyte of data.
However, there is a general trend of poor usability in as-
tronomy software - especially with regards to user interfaces
[5]. Astronomy software projects often under-estimate and

2A radio telescope in South Africa, part of a larger project
called the Square Kilometer Array. Further information may
be found at http://www.ska.ac.za/meerkat/



under-budget user interfaces resulting in numerous techni-
cal engineering panels instead of intuitive interfaces. This
call for improving astronomy user interfaces was echoed by
the Virtual Astronomy Observatory (VAO) Science Coun-
cil’s Recommendations (2010) [7] as well as added to with
the suggestion of increased user support. It is clear that
usability has long been an issue in software for astronomy,
however, most measures to remedy this seem to rely largely
on improved user interfaces.

4.1 Analytical Tools
The analytical tools CASA and AstroStat will be com-

pared and their usability will be commented on. CASA
(Common Astronomy Software Applications) [30] is a soft-
ware package for analysis, calibration and imaging of astro-
nomic data. It was developed by the National Radio As-
tronomy Observatory in conjunction with international sci-
entists from the European Southern Observatory (ESO), the
National Astronomical Observatory of Japan (NAOJ), the
CSIRO Australia Telescope National Facility (CSIRO/ATNF),
and the Netherlands Institute for Radio Astronomy (AS-
TRON), It offers a wealth of online support and user guides
through its website and Wiki, however the package operates
with a command-line input instead of a graphical user in-
terface (GUI). Compared to GUIs, this adds a burden on
the user to learn a new (Python based) language and would
most likely increases the cognitive complexity of user tasks.
However, this also allows for an increase in the range and
power of the many available features and makes this software
more robust.

In contrast, AstroStat [14] (which also provides analysis of
astronomic data) makes use of a simple and intuitive graph-
ical user interface - GUI - which will aid learnability and
make use of the features more accessible to Astronomers
who don’t have as much experience with code. To rival the
extensive user guides of CASA, AstroStat contains ’Help’
and ’Example’ buttons on the GUI, which is comparatively
a far more user friendly option than pouring through a guide
document and Wiki pages. AstroStat also categorises func-
tionality based on experience (exploratory, advanced and
expert) to provide some degree of tailoring. There is an ap-
parent trade-off between an extensive range of features and
usability between CASA and AstroStat.

4.2 Workflow and Collaboration Tools
CyberSKA is an online collaborative portal [15] which al-

lows astronomers as domain experts and end users to share
resources and input. The interface layout borrows from so-
cial networking sites and this is an advantage as it makes use
of learned symbols to create an intuitive platform. There is
a degree of clutter and some elements could have been hid-
den, however some of those features add to the usability of
the software - such as a readily viewed ’Upcoming Events’
tile. The integration of features to compress, extract, seg-
ment and visualize astronomy data sets caters to the specific
tasks of the domain-experts making this tool more than just
collaborative.

An Android application has been developed to notify users
of new astrophysical events (such as discovering an extra-
solar planet) [31]. This as-yet unnamed application devel-
oped by Zhao et al. makes use of a mobile platform to
enhance usability due to its accessibility and ingrained us-
ability features (e.g. multi-touch screen). The notifications

are displayed in an organised and systematic interface which
makes use of multimedia to enrich the content of with images
and other relevant files.

Both of the tools described in this section are intrinsically
more usable than the analytical tools mentioned above due
to differing levels of complexity for the user tasks at hand.

4.3 Visualization Tools
Scientific visualization involves taking data with three or

more dimensions and representing this visually in a way
which is easier to inspect by eye [11]. This is done in or-
der to reduce the complex cognitive load on the brain and
enable problem solving and pattern finding [21]. In astron-
omy, three dimensional cubes of data are visualized, and this
is a tool to aid exploration of the data in context of its sur-
roundings in the hopes of finding unexpected knowledge[9].

Visualization lends itself to enhancing the usability of a
software tool. Usability heuristics of the visualization (and
not just the interface) contributes to overall ease of use and
includes feedback, consistency and error checking with the
added perceptual heuristics of colour, Gestalt Laws and aes-
thetics [26]. The following tools visualise astronomy data
and will be critiqued based on usability.

4.3.1 Tool Analysis
GIPSY is an interactive system (developed by the Kapteyn

Institute) which reduces and displays astronomy data. Ruiz
et al. [23] stated that GIPSY needs work on the user in-
terface as it was currently not transparent nor user friendly
enough for non-expert users. The visualization tool GIPSY
contains a UI named HERMES which has interactive and
non-interactive versions as well as a GUI named Ggi [23].
From observation, the interface seems quite rudimentary,
technical and contains multiple similar looking text fields
making the interface overwhelming and difficult to use.

KARMA is toolkit for image and signal processing appli-
cations with a library containing tools for visualisation. The
KARMA toolkit [8] uses a modular approach utilizing many
widgets to perform different functions. This greatly extends
the usefulness of the toolkit and library. However, having
several open window based control panels might add to the
cognitive complexity of any task in Astronomy. From obser-
vation, the interface seems quite outdated yet more intuitive
than that of GIPSY.

VisIVO is a cross-platform multi-dimensional application
for visualisation [1] and it’s accessibility is enhanced by the
fact that it is a cross-platform, an important consideration
for usability [11]. VisIVO allows for integration, interactiv-
ity, navigation and collaboration across it’s many platforms
(mobile application, an easy to use web portal, desktop ap-
plication). This level of tailoring of the software could afford
users more control over their experience, increasing usabil-
ity. The interface screenshots show a simplistic GUI which
requires multiple clicks, fields and buttons to be addressed in
order to complete a task. This is a common trend through-
out most of the analysed astronomical software described
above.

Both Iris [17] and SKIRT [3] are astronomy tools dealing
in highly complex functions and manipulations of the data.
As such, they allow the option for a greater degree of cus-
tomization of the existing interface (with limited graphical
usability elements) through code. This comes at the cost
of an existing user interface which is more technical than



optimal. However, as stated in the article on SKIRT [3],
while the user interface may not be graphical, it hides com-
plexity through an interaction mechanism allowing for the
non-graphical user interface to still be user friendly.

4.4 Discussion
The interfaces of the analysed software packages with greater

functionality were often outdated and seem tedious to nav-
igate (with many menus to traverse). The collaborative
tools such as CyberSKA had more visually appealing in-
terfaces which also seemed current and easy to use. As
astronomy is such a complex domain, the functionality of
the software cannot be sacrificed for a greater degree of us-
ability. However, a user-centred approach to design might
result in software which actually lowers cognitive complexity
and increases knowledge discovery. A good user interface as
well as a more intuitive flow of processes to complete tasks
would create software which is not only appealing, but also
more useful than the current standard in software for as-
tronomy. It is also difficult to find description about how (if
at all) these software projects underwent usability testing.
If usability testing was omitted, this could be an approach
to implement in order to improve the quality of use of the
software.

Alternative methods other than standard mouse/keyboard
interaction could also be explored in creating an intuitive
interface for astronomy visualizations as was done by Mu-
lumba et al. [20]. This recent project created prototypes
to investigate gesture-based tracking and multi-touch inter-
action with the visualization software. The tasks included
visual transformations, sub-volume extractions within the
visualization and slicing of the data. It was found that
with the gesture tracking, there were some issues with depth
cues and position tracking and thus further work is required.
Multi-touch interaction seemed promising. This would take
advantage of learned pathways of users who currently use
touch screens and multi-touch interfaces with similar ac-
tions (e.g. pinching for zooming). The paper did not elabo-
rate further on the usability testing conducted, however this
could be an avenue for further research.

5. CONCLUSIONS
This paper has explored the unique challenges and atti-

tudes towards usability in highly specific and complex do-
mains. In doing so, approaches to usability in creating sci-
entific software and the development methods which result
in the usability (or lack thereof) were analysed.

As a subset of scientific software, astronomy software is
equally as specific and faces the same challenges in usabil-
ity. An analysis of these astronomy tools uncovered trends
of outdated and ineffective user interfaces, especially in the
sub-field of astronomy visualizations. This was particularly
surprising for a field which relies so heavily on visual percep-
tions. Other trends included tedious and repetitive actions
in order to complete domain-specific tasks. It is clear that
usability practices in the field of astronomy software devel-
opment are under-utilized (if used at all) and there needs
to be a shift in focus to producing more effective and use-
ful software by incorporating some usability evaluations, as
long as the evaluations are not restricting the development
of this software.

Avenues for future work could involve investigating alter-
native interface approaches and designs for a more intuitive

and effective user experience. These designs would need to
reduce cognitive complexity and improve analytical deduc-
tions. There is also a need for creating methods and tools
enabling software development in this field to be done with
usability in mind. This can be done using evaluation tech-
niques and encouraging user centred design rather than just
functional competency. The user evaluation methods recom-
mended would be a combination of user testing and heuristic
evaluation in cycles throughout the development process. A
combination of user domain knowledge and usability exper-
tise is important for creating software satisfying the needs
of users in science and astronomy.

6. REFERENCES
[1] U. Becciani, A. Costa, V. Antonuccio-Delogu,

G. Caniglia, M. Comparato, C. Gheller, Z. Jin,
M. Krokos, and P. Massimino. Visivo-integrated tools
and services for large-scale astrophysical visualization.
Publications of the Astronomical Society of the
Pacific, 122(887):119, 2010.

[2] J. Brooke et al. Sus-a quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7, 1996.

[3] P. Camps and M. Baes. Skirt: An advanced dust
radiative transfer code with a user-friendly
architecture. Astronomy and Computing, 9:20–33,
2015.

[4] P. K. Chilana, J. O. Wobbrock, and A. J. Ko.
Understanding usability practices in complex domains.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’10, pages
2337–2346, New York, NY, USA, 2010. ACM.

[5] G. Chiozzi, K. Gillies, B. Goodrich, S. Wampler,
J. Johnson, K. McCann, G. Schumacher, and D. Silva.
Trends in software for large astronomy projects. In
11th ICALEPCS Int. Conf. on Accelerator & Large
Experimental Physics Control Systems, Knoxville,
pages 13–17, 2007.

[6] M. Costabile, D. Fogli, C. Letondal, P. Mussio, and
A. Piccinno. Domain-expert users and their needs of
software development1. IST PROGRAMME, page 6,
2003.

[7] G. Fabbiano and D. Calzetti. Recommendations of the
vao-science council. 2010.

[8] R. Gooch. Karma: a visualization test-bed. In
Astronomical Data Analysis Software and Systems V,
volume 101, page 80, 1996.

[9] A. A. Goodman. Principles of high-dimensional data
visualization in astronomy. Astronomische
Nachrichten, 333(5-6):505–514, 2012.

[10] S. Greenberg and B. Buxton. Usability evaluation
considered harmful (some of the time). In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, pages 111–120. ACM, 2008.

[11] A. Hassan and C. J. Fluke. Scientific visualization in
astronomy: Towards the petascale astronomy era.
Publications of the Astronomical Society of Australia,
28(02):150–170, 2011.

[12] J. Howison and J. D. Herbsleb. Scientific software
production: incentives and collaboration. In
Proceedings of the ACM 2011 conference on Computer
supported cooperative work, pages 513–522. ACM,
2011.



[13] D. Kelly and R. Sanders. The challenge of testing
scientific software. CAST 2008: Beyond the
Boundaries, 2008.

[14] A. K. Kembhavi, A. A. Mahabal, T. Kale, S. Jagade,
A. Vibhute, P. Garg, K. Vaghmare, S. Navelkar,
T. Agrawal, A. Chattopadhyay, et al. Astrostat - a vo
tool for statistical analysis. Astronomy and
Computing, 11:126–137, 2015.

[15] C. Kiddle, M. Andrecut, A. Brazier, S. Chatterjee,
E. Chen, J. Cordes, R. Curry, R. Este, O. Eymere,
P. Federl, et al. Looking towards the future of radio
astronomy with the cyberska collaborative portal. In
Astronomical Data Analysis Software and Systems
XX, volume 442, page 669, 2011.

[16] B. Laugwitz, T. Held, and M. Schrepp. Construction
and evaluation of a user experience questionnaire.
Springer, 2008.

[17] O. Laurino, J. Budynkiewicz, R. DâĂŹAbrusco,
N. Bonaventura, I. Busko, M. Cresitello-Dittmar,
S. M. Doe, R. Ebert, J. D. Evans, P. Norris, et al. Iris:
An extensible application for building and analyzing
spectral energy distributions. Astronomy and
Computing, 7:81–94, 2014.

[18] C. Macaulay, D. Sloan, X. Jiang, P. Forbes,
S. Loynton, J. R. Swedlow, and P. Gregor. Usability
and user-centered design in scientific software
development. IEEE Software, 26(1):96, 2009.

[19] J. R. Miller and R. Jeffries. Interface-usability
evaluation: science of trade-offs. Software, IEEE,
9(5):97–98, 1992.

[20] P. Mulumba, J. Gain, P. Marais, and P. Woudt.
Scientific visualization of radio astronomy data using
gesture interaction. In Astronomical Data Analysis
Software an Systems XXIV (ADASS XXIV), volume
495, page 145, 2015.

[21] P. Parsons and K. Sedig. Distribution of information
processing while performing complex cognitive
activities with visualization tools. In Handbook of
Human Centric Visualization, pages 693–715.
Springer, 2014.

[22] F. Paz and J. A. Pow-Sang. Usability evaluation
methods for software development: A systematic
mapping review. In 2015 8th International Conference
on Advanced Software Engineering & Its Applications
(ASEA), pages 1–4. IEEE, 2015.

[23] J. Ruiz, J. Santander-Vela, V. Espigares,
L. Verdes-Montenegro, and J. van der Hulst. Gipsy
3d: Analysis, visualization and vo tools for datacubes.
In Astronomical Data Analysis Software and Systems
XVIII, volume 411, page 406, 2009.

[24] R. Sanders and D. Kelly. Dealing with risk in scientific
software development. IEEE software, 25(4):21, 2008.

[25] J. Scholtz. Usability evaluation. National Institute of
Standards and Technology, 2004.

[26] K. Sedig, P. Parsons, M. Dittmer, and R. Haworth.
Human-centered interactivity of visualization tools:
Micro-and macro-level considerations. In Handbook of
Human Centric Visualization, pages 717–743.
Springer, 2014.

[27] A. Seffah and E. Metzker. The obstacles and myths of
usability and software engineering. Communications of
the ACM, 47(12):71–76, 2004.

[28] J. Segal. When software engineers met research
scientists: A case study. Empirical Software
Engineering, 10(4):517–536, 2005.

[29] J. Segal and C. Morris. Developing scientific software.
Software, IEEE, 25(4):18–20, 2008.

[30] N. R. A. O. Website. National radio astronomy
observatory - casa. Available at
https://casa.nrao.edu/, version 1.6.0.

[31] Y. Zhao, I. Bond, and W. Sweatman. An android
application for receiving notifications of astrophysical
transient events. Astronomy and computing, 6:19–27,
2014.


